Math 20550 - Summer 2016 Line Integrals, Curl, and Divergence July 8, 2016

Problem 1.

- (a) Compute ∫₀⁻ e^xdx.
 (b) Let C be the line segment from (0,0) to (2,0) and compute ∫_C e^{x+y}ds.
- (c) Let C be as in part (b) and compute $\int_C e^{x+y} dx$.
- (d) Let -C denote the line segment from (2,0) to (0,0). Compute $\int_{C} e^{x+y} ds$.
- (e) Compute $\int_{-C} e^{x+y} dx$.
- (f) The integral in part (a) is one like you studied in Calc I. Which of the integrals $\int_C e^{x+y} ds$ or $\int_C e^{x+y} dx$ does is correspond to? Why one and not the other?

Problem 2. Compute $\int_C xy \, ds$ where C is parametrized by $\mathbf{r}(t) = 4t\mathbf{i} + 3t\mathbf{j}, \, 0 \le t \le 1$.

Problem 3. Compute $\int_C (x^2 + y^2 + z^2) ds$ where C is parametrized by $\mathbf{r}(t) = \sin t \mathbf{i} + \cos t \mathbf{j} + 2\mathbf{k}$, $0 \le t \le \frac{\pi}{2}$.

Problem 4. Find the total mass of a wire bent in the shape of $y = \sqrt{9 - x^2}$ with linear density function $\rho(x, y) = x + y + 2$.

Problem 5. Compute $\int_C \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F} = \langle x, y \rangle$ and C is the path which goes once around the triangle with vertices (0,0), (1,0), and (0,1) in the counterclockwise direction.

Problem 6. Find the work done by the force field $\mathbf{F} = \langle x^2, -xy \rangle$ in moving a particle from (1,1) to (9,243) along the path $x = t^2$, $y = t^5$.

Problem 7. Consider the cylinder of radius 2 whose base is the disk $x^2 + y^2 \leq 4$ in the xy-plane. Suppose we cut off the top of the cylinder according to the height function $h(x, y) = x^2 - y^2 + 6$. Find the lateral surface area of this cylinder (i.e., the surface area of the side, but not the base or top).

Problem 8. Compute $\int_C x \, dx + y \, dy + xy \, dz$ where C is the path $\mathbf{r}(t) = \langle \cos t, \sin t, t \rangle, \ 0 \le t \le \pi$.

Problem 9. Write down 3 different paths from (0,0) to (1,1). Let $f(x,y) = x^5y^6$ and compute $\int_C \nabla f \cdot d\mathbf{r}$ for all 3 of your paths. What do you notice?

Problem 10. Find div **F** and curl **F** where $\mathbf{F} = \langle xy + e^z, z \cos x, \ln(xyz) \rangle$.